COURSES

-> About this Resource
Scope *______
Map *____

-> Preliminary Courses
Contents & Objectives *__________________
Map *____
-> Botany
Contents & Objectives *__________________
Map *____
-> Axis Typology Patterns
Typology basis *___________
Pictograms *_________
Sexuality & development *___________________
Growth *______
Branching rhythms *______________
Branching delays *_____________
Branching positional *________________
Branching arrangement *__________________
Axis orientation *_____________
Architectural models *________________
-> Architectural Unit
About Arc. Models *______________
Models limitations *______________
Architectural Units *______________
Reiteration *_________
Sequence of development *___________________
Morphogenetic gradients *___________________
Physiological age *_____________
-> An Example
Wild Cherry (young) *_______________
Wild Cherry (adult) *______________
Wild Cherry (mature) *________________
Quiz *____
Case study Quiz *_____________
Supplementary resources *____________________

-> Eco-Physiology
Contents & Objectives *__________________
Map *____
-> Growth Factors
Factors affecting Growth *___________________
Endogenous Processes *_________________
Environmental Factors *_________________
Thermal Time *___________
-> Light interaction
P.A.R. *_____
Light absorption *_____________
Photosynthesis *___________
Respiration *_________
Maintenance respiration *__________________
L.U.E. Model *__________
Density effect *___________
Density effect on crop *__________________
-> Biomass
Biomass Pool *__________
Biomass Partitioning *_______________
Crop models *__________
A Crop model example *__________________
Quiz *____
Supplementary resources *___________________

-> Applied Mathematics
Contents & Objectives *__________________
Map *____
-> Probabilities
Section contents *____________
Discrete Random Variable *___________________
Expected value, Variance *___________________
Properties *________
-> Useful Laws
Bernoulli Trials *___________
Binomial Law *__________
Geometric Law *____________
Negative Binomial Law *_________________
-> Dynamic systems
Section contents *_____________
Useful functions *____________
Beta density *__________
Exercises *________
Negative Exponential *________________
Systems functions *______________
Discrete dynamic systems *___________________
Parameter Identification *__________________
Parameter estimation *________________
Supplementary Resources *____________________


-> GreenLab courses
GreenLab presentation *__________________
-> Overview
Presentation & Objectives *____________________
Map *____
Growth and components *___________________
Plant architecture *_______________
Biomass production *________________
Modelling - FSPM *______________
GreenLab principles *________________
Applications *__________
Supplementary resources *_____________________
-> Principles
Presentation & Objectives *____________________
Map *____
-> About modelling
Scientific disciplines *________________
Organs: tree components *___________________
Factors affecting growth *___________________
Model-simulation workflow *____________________
GreenLab inherits from *__________________
GreenLab positioning *_________________
The growth cycle *______________
Inside the growth cycle *___________________
Implementations *______________
Supplementary resources *____________________
-> Development
Presentation & Objectives *____________________
Map *____
Modelling Scheme *______________
Tree traversal modes *________________
-> Stochastic modelling
Principles *_______
-> Development
Growth Rhythm *____________
Damped growth *____________
Viability *______
Rhythmic axis *___________
Branching *________
Stochastic automaton *_________________
-> Organogenesis equations
Principles *_______
Organ cohorts *___________
Organ numbering *_____________
Substructure factorization *____________________
Stochastic case *____________
-> Structure construction
Construction modes *_______________
Construction basis *______________
Axis of development *________________
Stochastic reconstruction *___________________
Implicit construction *________________
Explicit construction *________________
3D construction *____________
Supplementary resources *____________________
-> Production-Expansion
Presentation & Objectives *____________________
Map *____
-> EcoPhysiology reminders
Relevant concepts *______________
Temperature *__________
Light interception *______________
Photosynthesis *___________
Biomass common pool *_________________
Density *______
-> Principals
Growth cycle *__________
Refining PbMs *___________
Organ cohorts *___________
GreenLab vs PbM & FSPM *___________________
-> GreenLab's equations
Summary *_______
Production equation *_______________
Plant demand *__________
Organ dimensions *______________
A dynamic system view *__________________
Equation terms *____________
Full Model *________
Model behaviour *______________
Supplementary resources *____________________
-> Applications
Presentation & Objectives *____________________
Map *____
-> Measurements
Agronomic traits *_____________
Mesurable/hidden param. *___________________
Fitting procedure *______________
-> Fitting structure
Principles *_______
-> Development
Simple development *_______________
Damped growth *____________
Rhythmic growth *_____________
Rhythmic growth samples *___________________
Mortality *_______
Branching *________
-> Crown analysis
Analysis principles *______________
Equations *________
Example / Exercise *_______________
-> Case study
Plant Architecture *______________
Development simulation *__________________
Introducing Biomass *_______________
Biomass partitioning *_______________
Equilibrium state *_____________
Supplementary resources *____________________

-> Tools (software)
Presentation & Objectives *_____________________
Map *____
Fitting, Stats *___________
Simulation *_________
Online tools *__________

Applications

Fitting

Plant structure fitting - Branching


Retrieving branching laws

    Branching modelling and qualitative description is often a heavy task. On each phytomer, several axillary branches may appear, with immediate or delayed development.

    This diversity can also be found on a given axis, even within the same growth unit, from one phytomer to another, as defined in the botanical arrangements of branching (acrotony for instance).

    However, in the GreenLab approach, the model focuses on the number of phytomers of a given type (physiological age) appearing at a given growth cycle, without worrying about their positioning.

    For each type of axis (i.e. each physiological age), the law of branching can thus be assessed from the ratio of the number of branched phytomers to the total number of phytomers.
    Hence, this single ratio can be defined as a branching probability pa. In practice, the definition of this ratio should be defined from a significant population, at a given rank, since this ratio may change along the axis.

    Moreover, in some cases, the branching process is delayed. The retrieval of dormancy can be define from an awakening probability in the branching process, for each growth cycle.

    Finally, the branching process may show couplings on a local scale, in a whorl or from one phytomer to its predecessor.

    Simple coupling in branching.
    On a given phytomer, let us consider the case of couplings in a simple whorl that may have no, one (right or left) or two branches (right and left) per whorl. The branching states can be described as follows:
      state (0,0): no branching on the phytomer
      state (1,0): one branch, either Left, or Right
      state (1,1): two branches on the phytomer, both Right and Left.

    Let us now define n00, n10 and n11, as the respective number of the different states measured on a given population.

    The total number of phytomers is therefore   n = 10 + n10 + n11

    The number of potential branches is 2.n since each phytomer may carry two branches.
    The probability pa of branching can then be estimated by the single ratio

      pa = (n10 + 2.n11) / 2.n

      ( pa = 0.5 (n10 + 2. n11) / (n00 + n10+ n11) )

    The thoeretical distribution among the three states can then be estimated without a coupling hypothesis .
      the state (0,0) number should appear close to n * (1 - pa) * (1 - pa)
      the state (1,1) number should appear close to n * pa * pa
      the state (1,0) number should appear close to 2 * n * (1 - pa) * pa

    If significant differences appear, the two potential branching processes on a single phytomer must not be considered as independent.

    A simple coupling model can be tested in such a context.
    Introducing a coupling r to the branching model, we can write the probability of branching dependeing on the 3 states as follows:
      p(0,0) = (1-pa)(r+(1-r)(1-pa)) (coupling of no branching)

      p(1,0) = 2(1-r) pa (1-pa) (no coupling)

      p(1,1) = pa*(r + (1-r)*pa) (coupling of branching)

    The coupling coefficient r can then be retrieved using the real distribution of a state.


Example. Coffee tree branches

    Phytomers on the coffee tree main stem usually have two branches.
    Three states (0,0): no branch, (1,0): a single branch, (1,1): two branches are thus possible.

    For a given population, measurements led to this distribution:
      Number of states (0,0) : n00 = 39
      Number of states (1,0) : n10 = 15
      Number of states (1,1) : n11 = 96

    The number of branches is thus: n10 + 2 n11 = 15 + 96*2 = 207
    And the number of phytomers is n = n00 + n10 + n11 = 39+15+96 = 150, thus giving 300 potential branches

    The branching ratio (probability) is thus pa = 207/300; pa = 0.69

    If no coupling is considered, the number of the different states should thus be:
      for state (0,0) : (1-pa)*(1-pa)*150 = 14 (14.415 to be compared with 39)
      for state (0,1) : 2*a*(1-pa)*150 = 64 (64,17 to be compared to 15)
      For state (1,1) : pa*pa*150 = 71 (71.415 to be compared with 96)

    This distribution is quite different from the measured one, showing higher distributions for the (0,0) and (1,1) states and less single branching.
    A phytomer thus shows a trtendency to develop either two branches or none.
    The coupling model can be used in such a context.
      The theoreticall number of unbranched phytomers is: p(0,0) = (1-pa)(r+(1-r)(1-pa))

      By identification we have: n00 / n = 0.31* (0.69 r + 0.31)
      giving
        r = 0.767